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ABSTRACT

A path-integral representation is constructed for propagators corres-
ponding to quantum Hamiltonian operators obtained from classical Hamiltonians
by an arbitrary rule of correspondence. tach rule yields a unique way of
defining the path integral in the context of a formalism which does not
require a limiting process. This formalism is more reliable than the usual
lattice definition in that all the expressions it entails are well-defined
for computational purposes and it allows the explicit evaluation of large
classes of path integrals. Direct substitution in the Schr8dinger equation

shows that there are no restrictions on the Hamiltonian operator. Examples

are given.
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[. INTRODUCTION

The purpose of this paper is to propose a solution to the following
problem: Given an arbitrary classical Hamiltonian Hc(p,q})anddn arbitrary
rule of correspondence which enables one to derive a quantum Hamiltonian oper-
ator ﬁ(f,g;}(Hermitidn or not) from Hc’ find a path-integral representation
for the propagator K= ¢ qy,ty | ..t > corresponding to H which (1) takes
proper account of the correspondence rule and (2) does not involve a limiting
process (i.e. a "skeletonization of the path" or "time-slicing" technique)
in its definition. The latter requirement purports to avoid the many ambi-
guities inherent in this process and to enable one to actually compute path
integrals, rather than simply exhibit formal expressions.

In 1975 we showedl, by time-slicing and Weyl transform techniques, that
a formal path-integral expression in phase space can be written for the pro-
pagator, where the Weyl transform of the Hamiltonian operator takes the place
of the classical Hamiltonian in the action functional. Subsequent work by
rohen? and Dowker3 showed that formal path integrals can be obtained to
accommodate any rule of correspondence. In all the foregoing papers, however,
work stopped when a "formal" path integral was obtained, leaving open the
problems of evaluation of the path integrals, substitution of the path-integral
expression in the Schrdinger equation for verification, and justification
of some possibly ambiguous Timits inherent in the time-slicing approach.
This paper will address the above problems by proposing an alternative approach,
and supersedes Ref. 1.

The starting points are the general framework for path integration in

phase space without limiting procedure introduced in Ref. 4 and Cohen's
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mappings between correspondence rules and ordinary functionss. [t will be
shown that an infinite series representing the propagator (where each term
i a path integral) satisfies the Schrbdinger equation with arbitrary H
and the boundary condition, provided a consistent well-defined algorithm
is used to properly take the correspondence rule into account.

Only path integrals representations with respect to the free-particle
measure will be considered here. The more general measures introduced in
Ref. 4, which allow a semiclassical expansion of the propagator, will be
treated clsewhere.6 We work in one dimension to simplify the discussion,
although the results can be readily generalized to n dimensions. All integrals

s
are over IR for suitable s, unless otherwise specified.

I1. THE PATH-INTEGRAL FORMALISM

The formalism for constructing phase-space path integrals without
resorting to a limiting procedure with ambiguous epsilonics was introduced
in Ref. 4 and only a brief description will be given here7. It consists of
defining what plays the role of a measure in phase space by its Fourier
transform, which is a simple closed-form expression. For example, the nor-
malized free-particle measure w(p,q) in phase space {YD , corresponding to

) ~ 5= [ eq [ [z - 20 a
o {« b

21 4
()

4 - .
can be shown to have, as its Fourier transform:




T (p,9) = +xp | 'i<y,7)>»é<v,1>>—%§ﬂ (L E) AR dk ()
T

,A'téé E(tlk')dy(t\dv(k') - %TSJG?(U’)&NG)dv((’)}/

(2}
where:
1)Y= {(p(t),q(t)] on T:z [ta,tb'}l a(t,)=q,. a(ty)=q,, p(t) unrestricted})

(3)

\/?’ ; 3
(2) KO - <_____,,__"f..._,,__ ”"(’ [Aw\ (ﬁb“qk\] (‘f)

200 T 247
is the free-particle propagator (T = tb-ta),

(3) [’d(t),ﬁ(t)] is the average free-particle path:
g(6) = {a, -y +9. (5, -]/ T (s)
PR = e (4,9 /T (¢)

(4) The G functions are the free-particle covariances:

G, (4t = [ (K-t (6 -5V (k1) + HA) Uy YU O) fmT

(‘7)
Gk t) = [(R-B)Y -1} ~ [tV ] /T )
G (4) = ~m/T (4)

L Y (x) ,grbtﬂ\fg | e x 20 annd O u’a\tmwuc]
(5) }A and ¢ are elements of J’( , the space of bounded measures

on the time interval T; < ,q> = f t)d}«(t) if }\ is induced
by a function, <5 sqpsq(t) if M 1s 3 , the "delta-function"

measure at t.
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The most general Gaussian measure, which absorbs all the quadratic

terms [ﬁ.e. not only p2/2m but g(t)p2/2m + f(t)q2/2 + k(t)pq] in either the

Hamiltonian or the action functional expanded about the classical path, was

constructed in Ref. 4, but the free-particle measure will be sufficient for
our purpose here. w is a true phase-space measure: it does not entail
performing separate, successive path integrals in configuration space and
momentum space.

This definition enables one to carry out path integrals of cylindrical
functionals, i.e. functionals which depend on only a finite number of terms
of the form<p q7 or <V, p> , by converting them into finite-dimen-

N dinarng

sional integrals. The result is the following fundamental integra][in a form

slightly different from that given in Ref.4, Eq. (97)] :

S F (g0, o <Pa, 42, <0g 7 o, <o 47) des(4,9)
¥
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In the above formula, w is not restricted to being the free-particle
measure, but can be the most general quadratic measure mentioned earlier. Of

particular interest are an expression for the Fourier transform of w:

7f{&xt’[*A<,v,q7 -i<v/~1a>]} M (44 = Jw (wv) (1)

and the special case where F(xl,...,xk) = Xpee e Xpo which yields the gene-
ralized moments formula in phase space[:an extension of the one given in Ref. 8,

Eq. (65), for configuration space]

S <y e S, > <Y g7 V> 9 (g 1)
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where
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and 3‘ o is the generalized Hermite polynomial of order n+m and matrix

ifA/2, defined in Refs. 8 and 910. The examples shown below, for the case

where all }(3 and V¥S$ are ) functions, reveal the general pattern:

‘/[}((\(\w(-t,ﬂ — :1‘(() (2()
&

[y p ) dtg gy = FEVFEIH R ECx) ()
f 4(eYqL’) dw(p ) = GG )+t Gy Be ) - 13

ft,(ﬁ\}’ ) das (%,9) = f({ W + b G,r(u) (4

]f;<<,)9<«,mu>w+,«) B TOTICAICY
¥
L)‘\b 3)‘7 >*1{\(’ W 5)51“)

tah 6, (4, {W( ) (25)
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PGy (4 6) 510 310) + ih gy (1 B IO B

PR T ) TV T B 6) T}

t (AmL Sat (}I/&z\ G}’("ﬁ ,{v) t f\)z G ({'l,{j\ G “,,(9) !

t [chY € (&, t,) & (&)
(2¢)
discontinuous

It will be noted that the pq correlation function,G(t,t'),is

across the diagonal t = t', and its jump there is of magnitude 1:

L : o T B g L | L
[(%—t’)-—m* ({’-”,\N) e (27)

~
[see. e.q., (8) for the free-particle vase] : Thus.'jtu'( 5&, Xk ) is not

defined. This indefiniteness, which occurs in a natural manner as one builds

the measure , stems from the non-commutativity of P and Q, and will give us
A~ ~

the flexibility we need to take various correspondence rules into account.




111. THE CORRESPONDENCE RULES
We will consider the most general quantum Hamiltonian operator H(P,Q,t)
which can be derived from a classical Hamiltonian H((p,q,t). The form most

8
convenient for our purposes 1s that given by Cohen™:

}4 = (.-) i L)Vlur ;{f. ((‘]\{.A\ "k\' " (/u/vv “] %ii ("‘;‘7]/{3

NN

-3

\,(‘\(,i\.(‘/%»l(fr i\\\( + {? }:')‘U‘SS /
(2%)

where F(u,v,h) is the transformation functionll. Fach F uniquely determines
the correspondence rule. For instance, F = 1, f = cos(uv/2h) and F =
(uv/?ﬁ)_lsin(uvfﬁh) give the Weyl, symmetrized, and Born-Jordan ordering
schemes, respectively. For real Hc‘ ﬁ is Hermitian 1ff }*(~u,—v.h) = F(u,v,h),
a condition we will not need. Also, we must have F(O,v,h) = F(u,0,4) = 1

to insure that f(E) and q{Q) correspond to f(p) and g(g). The transform can

be inverted to yield
H‘ {'}")/{) F (31\4\\, '—[({(?’dr'(\q” ‘\“%(‘/“)l‘}«}‘ ¢ r/((’,[’w)])s

< F (el W <4 e H197 51,
(24)

and finally, the transformation function F can be inferred from the knowledge

)

of the Hamiltonian Hc and 1ts transtorm H:l‘

A
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= {4 L\ {/L (g £, i H ) . (
that the F which relates a given H with a given H( is usually not

- example, for H = f(Q) and Hc = f(q), (30) gives:

~

. . o Gu/t
g\ﬁyﬂﬂdﬁ{(f{)e z Jclﬂ("ﬂe : [31)

( {(’ u ’/ t\ ‘
F such that F(u,0,%) = 1 will do. Similarly, one finds that pq is
to(PQ + QP)/2 by any F = F(uv/#) such that F(0) = 1 and F'(0) = 0.
i11 be more convenient in certain cases to put H in (28) in its

rdered form (Q before f). For this, one uses the Baker-Campbell-

A+B - B]/2 T - :

formula, e*'b - eéege fﬂ,g]/ , valid for all A and B which commute
It gives:

Qu + Pu) /% (Qu/t o Pesk Aduv/2t

e h e e e (3 2)

i1 be applied to functions of the endpoint S Q is represented by
~ih2>/l’qH. Thus, the most general operator H derived from HC 155

A

al-ordered form,

2 H“z jc‘?u(r’ &u AAr ¥/u,\7,4\) H. ('f’/‘i_,‘t)

AL D) (e (v2). 09

/, when H is applied to f(qb), the result is the right-hand side
A

v exp(-v 2/ q,) replaced by f(q. - v).
b b




IV. THE PROPAGATOR BY PATH INTEGRALS, FOR ARBITRARY HAMILTONIANS

With the two foregoing tools in hand, we can proceed to write a path-
integral representation for the propagator corresponding to an arbitary Hamil-

tonian operator. First, we write the latter in the form:
T

W 2 e (34)

P e o S
This is done to split off the free-particle part so we can use the free-
particle measure w(p,q). Although the propagator will be expressed as a power-
series in k, our aim is not a perturbation expansion. Rather, it is the manner
in which the ordering of the factors in H1 is taken into account in evaluating
the path integrals)so that the propagatd:.K thereby obtained satisfies the
Schrdinger equation associated with‘ﬂ to all orders in k. Thus, k should be

regarded as simply a "bookkeeping" parameter. Second, we define a function

Hno(p,q,t), obtained by normal-ordering the operator H1 and then replacing

A~~~

P by p and Q by q. For example (since QP-PQ = ifi):

A A

H( L ’t’l/ZW\ 4 &1’7'\, (3)’)

H = P /om + QPR =f'l/2m+&(9"‘m(7q‘¢@\ (3¢)

H., = T -<by. (37)
Qur main result is expressed in the following theorem.
Theorem
The propagator K= <qb,tb] Gty > »oor probability amplitude that a

particle at position q, at time ta will be at position qp at time tys for an

arbitrary Hamiltonian operator H [which we write as P2/2m + kHl(P,Q,t). Hl

R R -
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beinq nrhitrdry] . can be written as a phase space path integral as follows:

K&K f da rv/(,) oxg 7 - ._y‘(' 3 HM 1 ‘.(( )/‘f“), [] Ak S (3%)
)) ) : i p

Ty

J { t‘ J' «‘)fl

(lm'('t'(f‘\) \s\ uvln ( "(‘ )'(i(”'d‘u*laj
T
(39)

g 4
( "("‘> :.‘-\ ..[ LLJ / "({) S ‘M( th l r( ‘l),(}“l\,‘ {l]
J { 3 J. ‘)) __'

M EL L), 90,4 } (o)

-
_ ~RPRPRT T UE |
= kh{ b+ 1, (1% 33 - j M, ... dk
: N . T
N fimn | M (4, 9)
(’( 1‘\ o ((J (L’\ Yoy )E '

: ({MJ N(’{)/t)(!,)/ ‘) Hm_) s’.H'j i ‘)Hp.*ﬂ} )

(Y1)

where

(1) \U is the free-particle propagator (4), w(p,q) is the free-particle

measure defined by (1) and (Z2)ff, and Hnn(p,q,() ts a tunction obtained by




normal-ordering H, (i.e. Q before P), then replacing Q by q and P by p;

\

(2) The dot over the equa) sign in the first three equations, (38)-(40) |

denotes a formal, as yet undefined, relation. The equations are undefined
; ; W |
because as soon as one interchanges the path integral over =) and the time

(p(t),q(t),t)

integral over 1Y, one is faced with the path integral /fdw(p.q)ﬂno
Iy )

Since the integrand contains terms coupling p and g at the same time t, this
path integral is undefined bacause, as explained earlier, the pq correlation

function, G(t,t') in (8), is undefined at t = t'. However, if we replace

_{ﬂdw(p,q)Hnn(p(t),q(t),t) by T1im : ,/ dw(p, K. (p(t'),q(t),t), the i
- (t-t')}>»0 - no ’ s s
J o

resulting expression is well-defined. This is done in the last equation,

(41), which gives an unambiguous path-integral representation of K directly

tied to the ordering of the factors in the quantum operator Hl;

(3) It is not necessary that the H function in (38)-(41) be Hoo: However,

if another is chosen, the "time" limits in (41) will be different. There is
a close connection between the function chosen to replace Hn) and the type
of time limits which will give a well-defined,correct expression for the

propagator K. This will be proved and discussed in lemma 1 below;

(4) The propagator (41) satisfies the Schrddinger equation and the

T s e S 5 e R O A - S O 5 a4

boundary condition:

1<, la >

g s 2 :
~d 2y ol e g ] S
) - 9, " i

£in. i 6

i s o




k
7o | \ < / \ / 7, ' 4
3 ¢ ~ - A | G { \ 1‘2 d
\ /‘:/ {'&/l ’ ]“ / L‘3 /s i L\ “, [ a J ) (f v ) |
to all orders in k;
(5) The path integral in (41) can be evaluated in case a perturbation

series 1n k 1s sought. The result, proved later in the paper, can be expressed
in terms of only the classical Hamiltonian Hl and the correspondence function

Fa Gt s

K = kc[u%"wcd] , (¢3)

where /- is displayed in (70) and (71) below.

The proof of the theorem will consist in showing, by recurrence, that

E (41) satisfies (42) by using both (28) and (33) to relate the classical and
1 quantum Hamiltonians. First, we give a simple 11lustration of the theorem.
Example

Calculate, to first order in k, the propagator corresponding to the

following Hamiltonian:

H. P/iw +h[xPQ" +3QP& + (1 -p) QF

-

. . . . 2 2
(which represents all the possible Hs corresponding to H_ - pc/2m + kpq®).

Answer. The normal-ordered H is:

A{:’ :fl/i&w “"&[_ (::E)ZE ",("\((34 <,’\»</>®3‘ (q\)

AN

Using (41), we have:




i

ith lim K = § (

14

3
onlpre fdecpn]
V (4¢)

I))

o | ik (§-92) + &L (qeg) (1-¢ 23], D)

nave used (25), (21), and (5)-(9). It can be directly verifled that

isiies the Schr8dinger equation to first order in k, i.e. that

BN

@02~—wL&hb%4(P%WJ 2 1K= O(#)

—~
T

(¢3)

q
t _:,;t h
b a

L1t we could have obtained the same result without normal-ordering

tated earlier. If we consider the function obtained by replacing
jand p in (44), order the times in the sequence suggested by
tike successive coincidence limits, we get:
| - 1}'3 f‘,lk ./e‘ﬂvv\ J t((}(' (Lw(f,/c?)
t’\ T { é‘ )O* (7

1

:_“”‘ J 9(t) ;(4 qUt") Ao (,9)

f {‘,_\)04 l.l

op) A waw: 1), 9
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which also yields the correct result (47). The general proof of this flexi-
bility is found in lemma 1 below.

Proof of theorem

Lemma 1. For all phase-space functionals F[:q,p] which do not contain the

path (p,q) evaluated at either t or t', we have:

Linn fF[M][q(& W) - ) e}~k ] A i) =

-4 0"
(SO)
Proof. Consider the measure

dww(m) = [q(f)(({’) -'7(%’)7(%)’4:’6]@(1»,7). [ ST)

Its Fourier transform is

A<M ,qY —A<Y,
Jur () = gf MG - A<V A A A, (59

To evaluate it, we proceed as follows:

: —A<]M, Y -ALY B
-/7“)1”“') % : ; s (K, 9)
o x . .
- -4 < +A5’q>f4<v+cé e
- VAD 5 * " : de(fﬂ)
il
A:O‘:D

t)'l

- -
—

Fuwr (pm+ A3, ,v+<r8t,)‘)

ANV

- T SV U —
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= Fulp) [ Gy bt + %5%“,*’) +ABLY)

wf ()] o
where

Lpvitt) = [<qc) + *%fé% (£,5)Ap(s)
T
+ ’LS jé (%/5,)3‘\)(5‘) ¥ A&J‘Z((/S')AV(B’JJ
=% : |

< [0+ P S 6 (s40ape) v F S & (5. 804v0)
+U-’\_£Z(s/{’)o\)1(s)J (%)

and (2) was used. Therefore,
&r"’w (p,¥) = Fur(pv) { —i% + 48 ] 6 (FA) -6, (6]
+ 14 [6,(64)- Gt ] +R [ e k) -TE)]
y &

4 (v 6 8) -3 (n W {‘,t)s :

'(Yf)

Since G and g are continuous across the diagonal t = t'

ab) Gp’
(provided ,\A and V are different from 51' and ‘St' ), and since G has

a jump of magnitude 1 there [Eq. (27)] , we conclude that

Hiva For (MmN =0, (5¢)

E-t's ot

ty




Consequently, the measure wtt.(p,q) is effectively the zero measure in the
limit t-t')->0%, provided (1) this limit is taken after a path integral with

respect to w,,.(p,q) is performed [(50) is obviously false if the limit is

taken before the path integral is done] , and (2) the integrand does not
contain p or q evaluated at t or t'[if it does, then 5,(}\,\);{‘, ‘\") is no
Tonger continuous across the diagonal t = t'] . Q.E.D.

This lemma insures that the various path integrals obtained by changing
the form of the given Hamiltonian operator (by repeated use of the commutation
relation QP-PQ = if) will all yield the same result. This was illustrated in

Ay M

the example above where the two path integrals (46) and (49), corresponding

to the same Hamiltonian operator written in two different forms (45) and (44),
gave the same correct answer.

Therefore, it is sufficient to prove the theorem for the normal-ordered
form of Hl’ i.e. with Hno'

Lemma 2.

t, n
({f fum) = Tf“dk,\uo*kH?lh).w(h) (57)

by Y, tn—’). tn—l
sat Pae e 0 L R Bt
{"\ 'kq ‘km *—‘\

Proof. The lemma is true for n = 1. Assume it is true for n = k - 1.

Consider Fk(s)s( f;(x)dx)ﬁ . Then
t

a -
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()< kF 2 (9F0) = M{s)(& )

fdffdfpf ak d ey ).
(53)
Integrating from ta to tb with respect to s gives
&S 3 t' "tA-z
ADEUEAT éﬁcw.; R T 8

4

fle N£06). 5)

Changing variables: s = tl’ tl = tz, tk-l = tk » proves that the formula

is true for n = k. Therefore the formula is proved true by recurrence. Q.E.D.

Proof to first order in k. The theorem will be proved by recurrence. Thus, we

must first prove that (41) satisfies the Schr8dinger equation (42) to first

order in k. The propagator to first order in k is:

K=K, |'£_9~ dr  Liw dud ( ,qH t qu)t |\

[ A .‘i t'{,‘ao"g /t > V\o[?’( / }}
(¢2)

Using the correspondence rule (28), along with (32) to put Hl in normal-

~~

ordered form, we can write:

H, Lpce), a08,t] = (20b)™ [dpagdade Flov R H, (49,0
X uﬂ (/R) (qu v +uv/2) —iuqu)/uf«'arf(t')/K} .

(60)




e

Sdis

Substituting (61) in (60) reveals that the path integral is a particularly

simple one, namely the Fourier transform of w at (ué" Ik p V5t’ /t) :
It can be evaluated using (2) and (5)-(9), and the result, after the limit,

is:

e kol rebe ] (62)

where

1"\

R JJ/}dqu&\rr(uv"QjMH £9.t)

X o e ) - UAT) [49, (483
+uq (b8 tmv(q,-9.) + (E-E) (et /2m
+ q'\r(('b—k)-'wvl/"—]} : (63)

We must show that

ey s :
TmﬂL+QH(q‘ 9 h’) 4)6\"&‘,]

<[K, (1+44)] = O@W). (64)

Since Ko satisfies the free-particle Schrdinger equation, we must simply
show that the coefficient of k is zero, i.e. that

B = Q EIEE 4
T g t‘m] (Kex)+ Bk =00 (¢5)

19




we will use (33), its normal-ordered form in terms of the classical

For H1

A

function Hl‘ Thus,

- (2b)? [ dpdqdn ar Flu, v, b) H (4,9, b)
xivx(’ [4-;' Le T %) M‘%J} (QV:“/;,TYL
X M\t[ ’2‘-%, (‘)"V"?.Y_] ~ (¢e)

The remainder of the proof is tedious and straightforward. Differentiations
with respect to 9 and tb are performed under the 1ntegra1 sign, assuming

1nterchangeab111ty, using Leibnitz's rule, 'D/'b )f Qe ) A = P ty)

” f [34) H’A/Mb:) (M.’ where needed. The HIK term cancels the term
equ1v;\ent to LP((’ ¢\ . Upon collecting terms, the integrand vanishes,
b,%p

and the theorem is established to first order in k for arbitrary Hamiltonian

operators.

Proof to any order in k. Using lemma 2 [Eq. (57)] along with (61), we can

write K in (41) as:

=K[|+L£’J], (67)

1"(

where
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3fd/rSoU( f zﬂ@ Jd7

‘\

b d’}, Ol)(’g du‘ D\Ma, (),W“.. 0\/\)'1 F(u(,'v”k\)... F(%ﬂf{/’ﬁ)
< Ho(hag by - B (43.35.5)
X o [,{ s% (qsus ¥ ? W + U;’\’S/L)/""j

[—/,t:,>3+ t' E' de(t,q)bx‘,i /K)IA({‘)

*""*“j‘l(#s)J«'v*'A(‘(()+—---+\r51v({'i)}}. (¢%)
The path integral above is readily recognized as being
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which can be evaluated, by use of (2) and (5)-(9). By virtue of lemma 2,

the times entering the integral are now ordered ( (’ > k > t‘z b A | fa- > fa).
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The result is:
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We must now show that if

K,\ = K, [‘+32 %’da} (72)
satisfies it 1

satisfies the Schrddinger equation to nth order in k, then Km1

to (n+1)th order in k, i.e.
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This can be shown to be true if and only if the coefficient of kml is 0,

i.e. iff!3
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We will calculate each term in (75) separately and show that they cancel

each other out. Using (33) to represent H,, as we did earlier, we have:
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The time-derivative term in (75), -+ % Ko 'anr, / Bh , can be

written as A + B, where B is the derivative of the integrand and A evaluates

the integrand at tb Thus,
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The tb dependence of the integrand of Koo(ml is of the form

exp{ at, /( tb'ta)3 . Therefore,
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The q dependence of the integrand of o, is of the simple form
exp(aqb). Therefore,
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where En+l is defined in (71).
From (76) and (77) one can show that A + Hl(Koo(n) = 0. For this, it is
=+,

‘(. |

for 1 = 2 to n+l; C‘ = Cm-o and C. = C._, for i = 2 to

sufficient to make the following changes of variable: in (77), {

n+l, where c denotes u, v, p, or q; in (76), C = ARl where ¢ denotes

U, v, p, or q. It is also seen, by rearranging the terms inside the curly

brackets of (78), that B added to either side of (79) gives zero.




The boundary condition (42b) is satisfied, as can be seen from the
expression (43) for K. Indeed, Ko satisfies (42b) and 1&;,\ d. =0 :

£o6
as can be seen from (71).
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V. CONCLUSION

The object of this paper was to show that any Hamiltonian operator
is amenable to a path-integral treatment, by providing an unambiguous,
computationally viable formalism and taking proper account of the corres-
pondence rule leading from the classical function to the quantum operator.
The manner in which the correspondence rule is taken into account in a
)14

semiclassical expansion of the propagator (in powers of fi will be the

subject of a follow-up paper.
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Eq. (32).
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14. As discussed in Ref. 4, section IVB, a semiclassical expansion of a
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where K Wkg is the semiclassical approximation to K, ,jo is the
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and w absorbs the full quadratic part of the expansion of the action

(9, pe)-
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functional about the classical pathp However, 1f one expands the exponential

and attempts to carry out the path integral before the time integral,

the indefiniteness discussed in this paper appears again. One conjectured

v
answer, which remains to be verified, is that the 1‘k (¢ )‘i (t) term

7=
o

should be "time-ordered" (in the manner discussed in this paper) with the

k
()
y

same correspondence rule as the original Hamiltonian operator of the problem.
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